Inteligência artificial e o Transtorno do Espectro Autista: o potencial discriminatório
Publicado Set 10, 2022
Isadora Valadares Assunção
Universidade de São Paulo
RESUMO
O presente artigo é uma revisão integrativa de literatura que visa evidenciar o potencial discriminatório advindo de aplicações diagnósticas e terapêuticas para pessoas com deficiência, em especial para indivíduos com Transtorno do Espectro Autista (TEA). Tal potencial advém da formalização simplificada de complexos problemas da realidade, da escolha dos dados de treinamento - que podem conter vieses, sub- ou super-representações - e da ponderação de quais atributos serão analisados pelo modelo algorítmico. Além do risco discriminatório, tais modelos contribuem para a desumanização de pessoas com TEA por retirar sua autonomia e agência, tornando o quadro ético de IA insuficiente para mitigar o risco de discriminação algorítmica. Perspectivas técnicas de mitigação de risco também mostram-se insatisfatórias pela diversidade de apresentação do TEA, uma característica intrinsecamente não-observável e não-mensurável. Portanto, o aumento da representatividade de pessoas com TEA durante o desenvolvimento de tais ferramentas faz-se necessário, em uma perspectiva de desenvolver com pessoas autistas, não para elas.
Palavras-chave: Preconceito; Transtorno do Espectro Autista; autismo; discriminação social; Inteligência Artificial.
Como citar
Assunção, I. V. (2022). Inteligência artificial e o Transtorno do Espectro Autista: o potencial discriminatório. Revista Neurodiversidade, 3(1), 1-15.
Edição
V. 3, n. 1 (2022): Revista Neurodiversidade (ISSN 2764-5622)
Copyright ©
Todos os direitos reservados
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
A reprodução total é expressamente proibida.
A reprodução parcial é permitida sendo obrigatória a citação dos autores e da revista.
REFERÊNCIAS
American Psychiatric Association. (2014). DSM-5: Manual diagnóstico e estatístico de transtornos mentais. Artmed Editora.
Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. Calif. L. Rev., 104, 671.
Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in cognitive sciences, 6(6), 248-254.
Begeer, S., El Bouk, S., Boussaid, W., Terwogt, M. M., & Koot, H. M. (2009). Underdiagnosis and referral bias of autism in ethnic minorities. Journal of autism and developmental disorders, 39(1), 142.
Bi, X. A., Liu, Y., Sun, Q., Luo, X., Tan, H., Chen, J., & Zeng, N. (2019). The genetic-evolutionary random support vector machine cluster analysis in autism spectrum disorder. IEEE Access, 7, 30527-30535.
Brett, D., Warnell, F., McConachie, H., & Parr, J. R. (2016). Factors affecting age at ASD diagnosis in UK: no evidence that diagnosis age has decreased between 2004 and 2014. Journal of autism and developmental disorders, 46(6), 1974-1984.
Bosa, C. A. (2006). Autismo: intervenções psicoeducacionais. Brazilian Journal of Psychiatry, 28, s47-s53.
Bussu G, Jones EJH, Charman T, Johnson MH, Buitelaar JK BASIS Team. Prediction of autism at 3 years from behavioural and developmental measures in high-risk infants: a longitudinal cross-domain classifier analysis. J Autism Dev Disord. 2018;48:2418–2433. doi: 10.1007/s10803-018-3509-x.
Cardoso, A., Nogueira, M. (2021). Atenção Interdisciplinar ao Autismo. Belo Horizonte: Ampla.
Carvalho, A., Faceli, K., Lorena, A., & Gama, J. (2011). Inteligência Artificial – uma abordagem de aprendizado de máquina. Rio de Janeiro: LTC, 45.
Crippa A, Salvatore C, Perego P, Forti S, Nobile M, Molteni M, et al. Use of machine learning to identify children with autism and their motor abnormalities. J Autism Dev Disord. 2015;45:2146–2156. doi: 10.1007/s10803-015-2379-8.
Coeckelbergh, M. (2010). Health care, capabilities, and AI assistive technologies. Ethical theory and moral practice, 13(2), 181-190.
Constantino, J. N., & Charman, T. (2012). Gender bias, female resilience, and the sex ratio in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 51(8), 756-758.
Collins, N. (2019). A smartphone app to treat and track autism. Recuperado de: A smartphone app to treat and track autism | Stanford News. Acesso em 01 de fev. de 2022.
Duda M, Ma R, Haber N, Wall DP. Use of machine learning for behavioral distinction of autism and ADHD. Transl Psychiatry. 2016;6:e732. doi: 10.1038/tp.2015.221.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118.
Ertl, L., and Christ, F., Significant improvement of the quality of bystander first aid using an expert system with a mobile multimedia device. Resuscitation 74:286-295, 2007.
Erden, Y. J., Hummerstone, H., & Rainey, S. (2021). Automating autism assessment: What AI can bring to the diagnostic process. Journal of Evaluation in Clinical Practice, 27(3), 485-490.
Ferguson, A. G. (2017). The rise of big data policing. New York University Press.
Hackett, M. (2021). FDA greenlights Cognoa's tool to detect autism spectrum disorder in kids. Recuperado de: https://www.mobihealthnews.com/news/fda-greenlights-cognoas-tool-detect-autism-spectrum-disorder-kids. Acesso em: 01 de fev. de 2022.
Haney, Jolynn L. Autism, females, and the DSM-5: Gender bias in autism diagnosis. Social Work in Mental Health, v. 14, n. 4, p. 396-407, 2016.
Imm, P., White, T., & Durkin, M. S. (2019). Assessment of racial and ethnic bias in autism spectrum disorder prevalence estimates from a US surveillance system. Autism, 23(8), 1927-1935.
Jaliaawala, M. S., & Khan, R. A. (2020). Can autism be catered with artificial intelligence-assisted intervention technology? A comprehensive survey. Artificial Intelligence Review, 53(2), 1039-1069.
Ke, F., Choi, S., Kang, Y. H., Cheon, K. A., & Lee, S. W. (2020). Exploring the structural and strategic bases of autism spectrum disorders with deep learning. IEEE Access, 8, 153341-153352.
Keyes, O. (2020). Automating autism: Disability, discourse, and Artificial Intelligence. The Journal of Sociotechnical Critique, 1(1), 8.
Koo, C. W., Anand, V., Girvin, F., Wickstrom, M. L., Fantauzzi, J. P., Bogoni, L., ... & Ko, J. P. (2012). Improved efficiency of CT interpretation using an automated lung nodule matching program. American Journal of Roentgenology, 199(1), 91-95.
Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl Psychiatry. 2015;5:e514. doi: 10.1038/tp.2015.7.
Li B, Sharma A, Meng J, Purushwalkam S, Gowen E. Applying machine learning to identify autistic adults using imitation:an exploratory study. PLoS One. 2017;12:e0182652. doi: 10.1371/journal.pone.0182652.
Liu W, Li M, Yi L. Identifying children with autism spectrum disorder based on their face processing abnormality:a machine learning framework. Autism Res. 2016;9:888–898. doi: 10.1002/aur.1615.
Luger, G. F. (2013). Inteligência Artificial.
Maenner, M. J., Shaw, K. A., Bakian, A. V., Bilder, D. A., Durkin, M. S., Esler, A., ... & Cogswell, M. E. (2021). Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveillance Summaries, 70(11), 1.
McCarthy, C. (2019). How early can you — and should you — diagnose autism? Recuperado de: <https://www.health.harvard.edu/blog/how-early-can-you-and-should-you-diagnose-autism-2019082317653>. Acesso em 01 de fev. de 2022.
McPartland, J. C., Reichow, B., & Volkmar, F. R. (2012). Sensitivity and specificity of proposed DSM-5 diagnostic criteria for autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 51(4), 368-383.
Naser, M., Nasr, M. M., & Shehata, L. H. (2021). Artificial Intelligence (AI) And Autism Spectrum Disorder (ASD) Literature review. International Journal of Progressive Sciences and Technologies, 29(2), 396-415.
NHS Digital. (2021). Autism Waiting Time Statistics. Recuperado de: Autism Waiting Time Statistics - NHS Digital. Acesso em 01 de fev. de 2022.
Norvig, P., & Russell, S. (2004). Inteligência artificial. Editora Campus, 20.
Onu, C. C., Udeogu, I., Ndiomu, E., Kengni, U., Precup, D., Sant'Anna, G. M., ... & Opara, P. (2017). Ubenwa: Cry-based diagnosis of birth asphyxia. arXiv preprint arXiv:1711.06405.
Wang, F., & Preininger, A. (2019). AI in health: state of the art, challenges, and future directions. Yearbook of medical informatics, 28(01), 016-026.
Ra, C. K., Cho, J., Stone, M. D., De La Cerda, J., Goldenson, N. I., Moroney, E., ... & Leventhal, A. M. (2018). Association of digital media use with subsequent symptoms of attention-deficit/hyperactivity disorder among adolescents. Jama, 320(3), 255-263.
Robins, B., Dautenhahn, K., Te Boekhorst, R., & Billard, A. (2005). Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills?. Universal access in the information society, 4(2), 105-120.
Rudovic, O., Lee, J., Dai, M., Schuller, B., & Picard, R. W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. Science Robotics, 3(19).
Singer, J. (2017). Neurodiversity: The birth of an idea.
Song, D. Y., Kim, S. Y., Bong, G., Kim, J. M., & Yoo, H. J. (2019). The use of artificial intelligence in screening and diagnosis of autism spectrum disorder: a literature review. Journal of the Korean Academy of Child and Adolescent Psychiatry, 30(4), 145.
Strickland, E. (2019). IBM Watson, heal thyself: How IBM overpromised and underdelivered on AI health care. IEEE Spectrum, 56(4), 24-31.
Tariq Q, Daniels J, Schwartz JN, Washington P, Kalantarian H, Wall DP. Mobile detection of autism through machine learning on home video:a development and prospective validation study. PLoS Med. 2018;15:e1002705. doi: 10.1371/journal.pmed.1002705.
Tomasev, N., McKee, K. R., Kay, J., & Mohamed, S. (2021). Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities. arXiv preprint arXiv:2102.04257.
Wall DP, Dally R, Luyster R, Jung JY, Deluca TF. Use of artificial intelligence to shorten the behavioral diagnosis of autism. PLoS One. 2012;7:e43855. doi: 10.1371/journal.pone.0043855.
White, J. J. (2020). Fairness of AI for people with disabilities: problem analysis and interdisciplinary collaboration. ACM SIGACCESS Accessibility and Computing, (125), 1-1.
Whittaker, M., Alper, M., Bennett, C. L., Hendren, S., Kaziunas, L., Mills, M., ... & West, S. M. (2019). Disability, bias, and AI. AI Now Institute.
Xu, M., Calhoun, V., Jiang, R., Yan, W., & Sui, J. (2021). Brain imaging-based machine learning in autism spectrum disorder: methods and applications. Journal of neuroscience methods, 361, 109271. https://doi.org/10.1016/j.jneumeth.2021.109271
Zuboff, S. (2021). A era do capitalismo de vigilância. Editora Intrinseca.
Zuiderveen Borgesius, F. (2018). Discrimination, artificial intelligence, and algorithmic decision-making.